
4    July/August 2010    NCJ

SO2RDuino — a USB SO2R Box

Paul Young, K1XM

While most SO2R boxes connect with
a computer via traditional parallel (LPT)
ports, such ports these days are obsolete
— replaced by USB ports. I decided to
design a USB SO2R box that would be
simple. My eventual goal is to have a box
that’s small enough to take along when I
travel.

Features
Simple is nice, but an SO2R box should

have a full set of features. This design:
• switches headphones, microphone,

CW keyer and PTT (from the computer or
a footswitch)

• uses relays for headphone and micro-
phone switching.

• communicates through, and is powered
by, a USB port

• includes override switches for transmit
and receive and LEDs to display status

• incorporates a BLEND control that
blends left and right channels in stereo
mode

• Provides  four-bit outputs, with band
information for each radio. The outputs
are compatible with Array Solutions, Top-
Ten, Unified Microsystems or similar band
decoders.

• includes a “latch” mode. If the computer
transmits (ie, sets PTT), the headphones
will be connected in mono to the non-trans-
mitting radio, reverting to normal operation
when the computer stops transmitting.

• can be set so it will not go into stereo
— useful for people who have a hearing
issue in one ear.

• is compatible with N1MM Logger,
WriteLog, Win-Test and similar logging
programs

Some Terminology
The open two-radio switching protocol

(OTRSP) is a simple serial protocol that’s
supported by the most popular contest log-
gers. The protocol specification (see www.
k1xm.org/OTRSP/) is available under a
Creative Commons license, which allows
anyone to use it.

The Arduino1 is a single-board computer
designed for teaching purposes. It includes
the microprocessor, crystal and USB
interface. It appears to the PC as a serial
(COM) port. It can be programmed through
the USB interface, and the software to do
this is free. There are many clones of the
Arduino in different shapes and sizes. An
Arduino or clone is almost perfect for this

project.
OTRSP uses the DSR modem line to

control PTT. The Arduino has DSR avail-
able on a pin of the USB interface chip, but
it is not connected to the microprocessor.
This can be fixed by soldering a 1000 W
resistor between the appropriate pins of
two ICs.

Surrounding Circuitry

The circuitry to make an Arduino into an
SO2R box is straightforward. Figure 1 is a
block diagram. Two relays are used for the
headphones. One relay switches between
the two radios; the other switches to ste-
reo. One relay switches the microphone
between the two radios, and, to avoid hum,
it switches both the hot and ground sides
of the microphone.

Two transistors are used for PTT — one

Figure 1 — Block diagram

Table 1
SO2Rduino commands
Command Set
TX1	 Set transmitter to Radio 1
TX2	 Set transmitter to Radio 2
RX1	 Set receiver to Radio 1 mono
RX2	 Set receiver to Radio 2 mono
RX1S	 Set receiver to Radio 1 (left) and Radio 2 (right) for stereo
?NAME	 Print the name of the box (SO2Rduino)
AUX11	 Set the value of aux port 1 to 1
AUX215	 Set the value of aux port 2 to 15
VMONO1	 Do not allow stereo receive
VMONO0	 Allow stereo receive
VLATCH1	 Turn on latch mode (on transmit listen to the other radio)
VLATCH0	 Turn off latch mode

NCJ    July/August 2010    5

F
ig

u
re

 2
 —

 S
ch

em
at

ic
 d

ia
g

ra
m

 a
n

d
 p

ar
ts

 li
st

 o
n

 n
ex

t
p

ag
e

6    July/August 2010    NCJ

for each radio, and two more are used for
CW keying. This could have been done
using another relay, but transistors are
cheaper [and don’t make noise — Ed].

The AUX ports are driven by a shift
register IC. The shift register shares two
outputs with the headphone relays. The
shift register loads within microseconds, so
the relays are not affected by the sharing.
The front panel has two switches, one for
transmit and one for receive. They select
Radio 1, Auto, or Radio 2. It also has four
LEDs — two for transmit and two for re-
ceive. Figure 2 shows the schematic.

Prototype
I used a Freeduino for the prototype. It is

available from NKC Electronics, www.nkc-
electronics.com. It is designed to accept
a plug-in daughter board, called a “shield”
in Arduino terminology. The standard shield
is too small for all of the SO2R box compo-
nents. A larger version of the Arduino, the
Mega, uses a larger shield and has more
connectors. The connectors on the Arduino
match some of those on the Mega shield,
so that shield can be used with a regular
Arduino. I purchased a Freeduino, a bare
Mega shield and a set of Arduino shield
connectors from NKC.

The Freeduino is a kit. When I assem-
bled it, I omitted the power supply parts
and the LEDs, because I would not need
them for this project. You can install them
if you prefer, however. I also soldered the
reset button to the shield rather than to

the Freeduino board, because the shield
is installed on top of the Freeduino board.

I also connected a 1 kW resistor from pin
3 of the FT232RL chip to pin PD2 of the
processor. If the microprocessor is a DIP,
this is pin 4. If it is a surface mount device,
it is pin 28 or 32 (the highest numbered
pin on the device). The FT232 is a surface-
mount chip, but I did not use special tools to
solder the resistor. I simply put a tiny drop
of solder on the end of the resistor lead,
placed it over the pin and heated it with my
soldering iron. It took me a couple tries to
get it right (ie, connecting to pin 3 and not
shorting to any other pins).

Almost all remaining parts were installed
on the shield. I used the holes for the extra
connectors as additional board space and
put the PTT and CW transistors there. The
IC was installed in the area near the center
of the board, which is set up for a DIP. The
relays were placed to the rear of the board.

I decided to use eight-pin DIN connec-
tors for the radio connections. The pinout
matches my existing YCCC SO2R Box.2 I
don’t enjoy soldering DIN connectors, but
the alternative is to put eight connectors
on the box instead of two. The 0.1 µF ca-
pacitors were installed on the connectors.

Most parts came from Mouser Electron-
ics, www.mouser.com. The DIN connec-
tors came from Jameco Electronics, www.
jameco.com. The parts I chose were not
the only possibilities, nor were they even
the best available. In some cases I picked
them because they were the first ones I

found when looking through the catalogs.
The enclosure was chosen because I had
one on hand. It is an inexpensive Ten-Tec
case, www.tentec.com, and it is bigger
than needed.

The parts list does not provide part num-
bers for all components because in some
cases there are several manufacturers —
the 2N3904 transistor is one example. My
strategy is to type the item into the “search”
box on the Mouser Web site and buy the
least expensive item in stock.

There is nothing critical about the parts
I used. The relays are 5 V DPDT units that
do not draw much current. The microphone
connector is of a type that does not connect
to the chassis. I used a stereo connector
and only wired two pins.

The shield board simply plugs into the
Arduino. I wired parts of the board, plugged
it in and tested them as I went. This allowed
me to check the hardware and software
one piece at a time.

Note that the DIN connector in the sche-
matic is shown from the plug side. At first
I forgot this and had them halfway wired
before realizing that I had them backwards!

Pictures of the front, rear and inside of
the SO2R Durino are available on the NCJ
website, www.ncjweb.com\bonus.php.

Programming and Testing
One feature of the Arduino is the com-

plete software, available on the Arduino
Web site. Follow the “Getting Started”
instructions to download and set up the
software. Then go to the NCJ Web site,
www.ncjweb.com/bonus.php, and down-
load the SO2Rduino program. Unpack
the ZIP file and load it, using the Arduino
software. Once the software is loaded the
Arduino will become an SO2R box. One
transmit LED and one receive LED should
be lit. You can change which LEDs are lit by
using the two switches. Don’t be surprised
if the relays switch a few times when you
connect the SO2Rduino to the computer.

The next test is to use a terminal pro-
gram, such as Hyperterminal. Start the
terminal program and connect to the COM
port where the Arduino is connected. Set
the speed to 9600 baud, 8 bits, no parity,
1 stop bit, no flow control.

Now you can type commands to the
SO2Rduino. All commands are in upper
case followed by the return character (the
Enter key). Table 1 lists a few commands
and their effects. If the RX1S command
does not produce stereo, with both receive
LEDs lit, then the box is probably in mono-
only mode. Use the VMONO0 command
to change this.

Connect the box to one or two radios,
a microphone, headphones and a keyer.
If you hear hum in the headphones make
sure that the SO2R box and the radios are

Parts List
C1 – C7	 0.1uf 50 V	 Mouser 80-C315C104M5U5CA
D1, D2	 Green LED	 Mouser 604-WP7113GD
D3, D4	 Red LED	 Mouser 604-WP7113ID
D5 – D7	 1N4148	 Mouser
J1 – J4	 Stackable header kit for
	 Arduino	 NKC ARD-0021
J5, J6	 8-pin DIN jack	 Jameco 15861
J7	 ¼-inch stereo jack	 Mouser 568-NYS234-3
J8	 3.5-mm jack	 Mouser 161-7300-EX
J9, J10	 RCA phono jack	 Mouser 161-2052
J11	 DB-9	 Mouser 523-G17S0900110EU
K1 – K3	 DPDT 5V	 Mouser 653-G6K-2P-DC5
Q1 – Q7	 2N3904	 Mouser
R1 – R4, R*	 1 kW	 Mouser 291-1K-RC
R5 – R7, R10 – R17	 4.7 kW	 Mouser 291-4.7K-RC
R8, R18 – 25	 220 W	 Mouser 291-220-RC
R9	 10 kW pot with switch	 Mouser 774-270X232A103B1B1
S1, S2	 SPDT center off	 Mouser 108-1MS3T1B1M1QE-EVX
S3	 Part of R9
U1	 74HC594	 Mouser

Enclosure		 Ten-Tec TPB-45
LED holders		 Mouser 696-SSH-LX5091
Arduino		 NKC ARD-0002
Megashield PCB		 NKC ARD-0046
16-pin IC socket		 Mouser 535-16-3518-10

R* is the resistor soldered to the Freeduino board.

NCJ    July/August 2010    7

properly grounded. Check that by using the
switches and commands you can listen to
either or both radios and transmit on either
radio. The final check is that the computer
can set the PTT connection. You will need
to use a logging program for this.

Operation
How you set up the SO2Rduino depends

on the logging program. The Arduino COM
port is set to OTRSP, 9600 baud. RTS is
set to PTT, and DTR is set to off. Some
logging programs will automatically set the
baud rate and other parameters for OTRSP.

If you had been using a different SO2R
box, make sure you clear all of the old
settings before setting up this box. If the
program offers a choice, set the keyer to
work with both radios. Once the logging
program is set up properly, it should be
able to switch transmit and receive radios
on command.

Possible Modifications
The most obvious modifications would

be to leave things out. For example, if you
do not need band decoder outputs you
could leave out U1, J11 and R18 – R25. If
you don’t want a BLEND control you could
leave out R8 and R9. In addition you re-
ally don’t need the switches and LEDs,
because the computer can fully control the
SO2Rduino, so you could leave out S1, S2,
D1 – D4 and R1 – R4. One operator I know
prefers to always hear Radio 1 mostly in
the left ear and Radio 2 mostly in the right
ear. This can be done by leaving out a few
wires connecting K1 and K2 to the radios
and rewiring the BLEND pot so it is always
connected.

A different Arduino clone could be used.
Several clones are designed to plug into
breadboards. It might be easier to build an
SO2Rduino using one of these. You could

use 12 V relays. This may be convenient
if you have an existing SO2R box that you
want to upgrade. The 2N3904 will drive a
12 V relay. You will need to use an exter-
nal power supply, and you can power the
Arduino from that supply rather than from
the USB port.

If you have the ability to deal with
surface-mount parts, you could make a
PC board for this project. If you do, you
might want to consider using an FT2232
IC, which is a dual USB to serial device.
Then you could add a K1EL Winkey 2 IC
to the board (visit http://k1el.tripod.com/
WinKeyer2.html).

Future Plans
I have started to build an SO2Rduino for

my traveling station. It will use the Modified
Pico, www.modifiedelectronics.com,
a small Arduino clone. All features will
be available except the AUX port, since I
don’t plan to take band decoders on the
road. The result should fit nicely in a Ten-
Tec TPB-17 box. The SO2Rduino, a K1EL
WinKeyer and a multiport USB-to-serial
converter will give me SO2R capabilities
with a notebook computer.

Summary
Using an Arduino or clone makes a

computerized SO2R box that’s about as
simple as one that works from the LPT port.
In addition, it gains a few features, such as
AUX ports for both radios, and it won’t soon
become obsolete.

Notes
1 The official Arduino site is www.arduino.cc.

More information about clones can be found
at www.freeduino.org/.

2 The YCCC SO2R Box (plus) is a more complex
SO2R device with a built-in keyer. Information
is available at http://so2r.k1xm.org.

