
NCJ November/December 15

Michael Foerster, WØIH / mchllfrstr@gmail.com

A Programming-Free Automatic Arduino
Antenna Switch

When I’m away from home, I often
operate my Elecraft K3 station re-
motely — either from my phone or a
computer. I created my first Arduino
project to read the band data lines
from the ACC connector on the Ele-
craft K3 to automatically change my
antennas through a remote antenna
switch at the base of my tower (see
Figure 3). I found that Yaesu radios
use a similar band selection, using
four band data lines.

I built another similar antenna
switch for our radio club’s (Winona
Amateur Radio Club) remote station,
which employs an Icom IC-7300 (see
Figure 2). Most Icom radios generate
an analog voltage varying from 1 to
8 V, depending on the band; this is
pin 5 of the ACC socket. It should be
noted that the Icom band voltage does
not differentiate between 20 and 17
meters, or between 12 and 10 meters.

I’ve been running an automatic
antenna switch with my K3 station
for about 9 years and have found it
to be reliable, even at near legal-limit
power levels. It is also very useful
when operating a contest not to
have to worry about selecting your
antenna when changing bands.

The design I’ll describe in this
article is somewhat simpler than
what I have in my home station in
that this design does not include a
display (see Figure 3). It does, how-
ever, have a beeper module, which
announces status, errors, and other
information in CW. There are push
buttons for manual antenna control
and a 10-minute IDer. These buttons
are not required, but if you plan to
mount the case within easy reach,
they can be handy.

No Programming Required

This article and code have been
written so that someone lacking pro-

Figure 1 — Example of a four-channel antenna switch. The Arduino is on the
upper right and mounted on a screw terminal adapter. The activator relays
are at the lower left.

Figure 2 — An Icom combination of the antenna switch and the Arduino, mounted
in the same case using four relays. This is the Icom version our club station uses,
albeit a bit crude. The copper case just to the left covers the Arduino to reduce
noise. The Icom ACC connector is visible at the upper left. Optional buttons were
not used for this version. This six-position relay switch is from the April 2005 QST
article, A Low-Cost Remote Antenna Switch, by Bill Smith, KO4NR.

gramming experience can success-
fully complete this project. Only three
simple things need to be modified
from the code that I provide.

♦ Select the radio type — Icom or
Elecraft/Yaesu.
♦ Select which antenna is enabled

for each band (160 – 6 meters).

16 November/December 2020

reliably (see Figure 4). Most available
remote antenna switches ground the
antenna connections when not in use.

Most kits do not come with SO-239
connectors. Be careful when ordering
on eBay; some are extremely poor
quality. You need to find SO-239 that
have a fairly long threaded barrel, to
allow the connector to go through the
cover and still leave sufficient threads
to match the PL-259 connector.

I typically use CAT5 cable to sup-
ply power to the remote relay box.
The relays require 40 mA, so a run
of even up to 100 feet should work
satisfactorily. You can use a normal
network connector in the shack, but
I would strongly suggest a waterproof
connector for outdoor connections
(see Figure 5). Keep in mind that the
Arduino circuit can easily drive many
existing commercial remote antenna
switches in parallel with their existing
shack switch.

Arduino as a Switching Device

This project uses an Arduino Nano,
which is quite small. Arduino clones
are available for about $6 within the

Figure 3 — Antenna switch with an 8th relay that toggles 12 V to enable
a 120 V ac SSR to turn on ac power to my rotator, powered speakers, and
power supply.

Figure 4 — Antenna switch as a typical relay kit. Normally, these kits do
not include SO-239 connectors.

♦ Indicate how many antennas you
are switching (2 – 8).

You will need to install the Arduino
integrated development environment
(IDE) to allow you to edit these three
items and upload the code into your
Arduino. I’ve tried to make the instruc-
tions for this process as simple as
possible.

Antenna Field Hardware

A remote antenna switch allows
you to run a single coax to your
antenna field and switch to up to
eight different antennas. Many of the
remote switches available (most as
kits from eBay) use inexpensive high-
current relays to switch the output
power up to the full legal limit quite

Figure 5 — Tower band switch
mounted on my tower. Note the
common-mode choke mounted in
the output line to the shack and the
lightning arrestors at the bottom for
each antenna input.

NCJ November/December 17

US; a genuine Arduino Nano will run
about $20. The only downside to the
Arduino clone is that you need to load
the CH340 chip driver for the USB
interface in your computer before you
connect the Nano to your PC.

Make sure that the Nano that you
purchase has a USB connector.
Less-expensive “Pro Mini” versions
that are available require adapters
to program.

A 5-V relay board is required, along
with the Arduino as an interface be-

Figure 6 — MultiRadioBandSwitch schematic.

tween the Arduino outputs to drive the
external 12-V relays. You cannot turn
on the remote 12-V relays directly
from the Arduino. These 5-V relay
boards are available on eBay that
interface with the Arduino. They cost
about $1 per relay and are available
in up to 16-relay versions. Power for
the Arduino can be taken from the
radio’s 12-V accessory jack, so it will
turn on when the radio is powered on.
Current draw from the 12-V source is
less than 100 mA. Figure 6 depicts a

diagram for a multi-radio band switch.
The circuit can be built using any
number of relays — up to 8 as shown
and depending on your individual
needs. The unused Arduino relay
outputs may be left unconnected.

The internal 5-V regulator on the
Arduino cannot handle the heat of
the higher voltage, so an LM7807 (or
LM7808 or LM7809) voltage regulator
is required to reduce the voltage into
the Arduino from the 13.8 volt to the
“VIN” input.

18 November/December 2020

Figure 7 — The case for an Elecraft switch with two momentary push buttons
and hole in the front panel to access the Arduino USB programming port.
RCA connectors for P3 power. The 15-pin connector is for the Elecraft K3 I/O,
and the 9-pin D-sub connector is for the relay antenna output drive.

Two optional push buttons may be
added. The first allows you to switch
through the antennas manually. When
the button is held for 2 seconds, the
unit switches to manual mode and an-
nounces the antenna number in CW.
If you press the button again briefly,
it will switch to the next antenna,
again announcing the antenna in CW.
Holding the button for more than 2
seconds will return the unit to auto
mode, announcing “AUTO” in CW. If
the antenna button is pressed quickly
while in auto mode, the relay number
will be announced in CW.

The second button is used to en-
able a 10-minute ID timer. Hold the
button for 2 seconds and it will an-
nounce “ID” in CW. At the end of 10
minutes, it will announce “ID” again.
If the button is pressed briefly, the
timer will reset to restart the ID timer.
Holding the button again for more
than 2 seconds will disable the timer
function.

Icom Radios

If you have an Icom radio that pro-
vides the analog voltage (1 – 8 V) to
indicate the radio’s band, you’ll need
to adapt the circuit (see Figure 6). Be-
cause Arduino inputs cannot exceed
5 V, a voltage divider circuit using
the 6.8 kΩ and 10 kΩ ohm (1/4-W)
resistors is needed to limit the input
to Arduino pin A0 to less than 4.8 V.
These resistors should be 1% toler-
ance or select values that are close. A
single 100 mH choke and capacitors
on the input from the radio are used to
prevent RF from affecting the analog
voltage input. Reference your specific
radio documentation for this analog
output pin, but it is likely pin 5 of the
ACC socket, and the 13.8-V output on
the socket is typically pin 8.

Note if you bench test the analog
input from the Icom, there is a slight
loading effect from the 16.8 kΩ resis-
tors on the analog output from the
radio of about 0.2 V.

Elecraft/Yaesu Radios

If you have an Elecraft (K3, K3S, or
K4) or a Yaesu that has the BCD band

Figure 8 — Regulator mounted below the circuit board and used as a second
stand-off. The nut is glued to the top side of the regulator to assist in easy
screw attachment.

outputs, use the connections shown
in the inset at the bottom left of the
circuit diagram in Figure 7 in place of
the Icom voltage divider. All band data
inputs (A1, A2, A3, and A4) should
have 100 mH chokes in line to pre-
vent RF from affecting the inputs to
the Arduino. Reference your specific

radio documentation for the Band0 –
Band3 pins and the 12-V output on
the accessory connector. For 13.8-V
output on the Elecraft radio, you can
use the RCA connector that sup-
plies power to the P3 display, add
another short pigtail with a female
RCA connector to allow connecting

NCJ November/December 19

the P3 power. The Yaesu radio uses
the LINEAR socket for the band data
and 13.8-V outputs. The output pins
on the Elecraft and Yaesu radios are
all 5-V output, so they won’t need any
voltage conditioning.

Building the Circuit

I’ve built a number of different
circuits into a variety of cases, and
I’ve learned that a metal case is
necessary for noise immunity, with a
ground screw to connect the case to
your station ground.

When designing the chassis, keep
future maintenance in mind. I de-
signed mine so the top and bottom
of the chassis can be removed with
the ends still in place, so the boards
can be accessed.

When constructing the case, cut-
ting openings in the aluminum cases
to accommodate connectors can be
time consuming. It’s much easier to
run the cables through a grommet
and put the connectors on the end
of a short cable.

The version shown in Figures 1 and
7 uses four of the eight available an-
tenna outputs and has an RCA plug
to obtain 12 V dc from the Elecraft K3.
A second female RCA jack wired in
parallel with the male connector on
the radio allows an Elecraft P3 display
to be plugged in as well. I also mount
the Arduino Nano on a screw terminal
adapter. This is a small board that the
Nano mounts into with push-in con-
nectors. Each pin has a correspond-
ing screw terminal, which is much
easier than any other method and
cost less than $5. See the Arduino
mounts in Figures 1, 2, or 3.

As for mounting the boards into the
case, I used 1/4-inch standoffs with
4-40 screw hardware. The LM7807
voltage regulator is fastened, using
the case as a heat-sink, beneath the
small perf-board. The regulator also
acts as a standoff for one end of the
perf-board. See Figure 8. For the relay
card, I used the slotted edge on the
aluminum case for the one side of
the relay board, and standoffs for the
other side (see Figure 8). A 1/2-inch

hole is cut in the front of the case
to allow access to the Arduino USB
connector for programming.

I would also suggest drilling a
series of five or six 1/4-inch holes
across the bottom of the case near
the front, and another similar series
across the top of the case near the
back to create some air flow through
the case for cooling.

Loading the Arduino IDE

You can download the code into
the Arduino before you have it built
up into the chassis. The connections
are not required to load the code into
your Arduino just to become familiar
with the process.

You will need to load the Arduino
IDE onto your PC. This can be down-
loaded from Arduino.cc. Locate the
Software and Download Tools. A web
editor version is available, but this is
only valid for genuine Arduino boards
and will not work with the clones.
Install the Arduino IDE on your PC,
Mac, or Linux system using just the
default option.

If you are using a clone NANO, load
the CH340 driver before connecting
the Arduino.

You can google “Arduino ch341
driver download” and download and
install the appropriate driver for your
system platform (Windows 32 bit or
64 bit, Linux, or Mac).

Load the MultiRadioBandSwitch.
zip files from the NCJ website, www.
ncj.com, and extract the files (double
click on the downloaded file). You may
choose to move the extracted folder
and files to a more permanent loca-
tion on your computer hard drive first.

With the Arduino IDE already
installed on your computer, double
click on the MultiRadioBandSwitch.
ino filename. All of the .ino-extension
files in the same directory will load
into the editor. Note also that the files
must be in a directory called “Mul-
tiRadioBandSwitch,” matching the
MultiRadioBandSwitch.ino name.

Connect your Arduino Nano to
a USB port on your computer. The
Nano typically requires a mini-B type

USB cable.
In the Arduino IDE, select the Tools

and Board menu selections. Click
Arduino Nano within this menu.

In the Arduino IDE, select the Tools
and Port menu selections. Select the
serial port that the Arduino Nano is
connected to (you may need to re-
move the Arduino Nano USB cable
and note which ports are still listed
to identify the correct port. Re-install
the Arduino Nano USB cable and
select the USB port that was added
to the list.)

The code loaded into the Arduino
Editor should load into your Arduino
Nano, even if you do not have the
complete circuit built up.
♦ Select the Sketch menu and

Verify/Compile. This should complete
successfully. No other Libraries are
required for the Arduino sketch I’ve
provided.
♦ Select the Sketch menu and click

on Upload. If this fails, you may need
to select the Tools menu, Proces-
sor, and select ATmega328P (Old
Bootloader).

NOTE: Do not change the Tools/
Programmer. It should remain set as
AVRSIP mkII.

Modifying the Code

Three settings need to be modified
in the code for your specific station
needs. These are all near the top of
the MultiRadioBandSwitch.ino file,
which should be the left-most tab in
the Arduino editor.

1. Define which radio type you are
using. You need to comment out the
radio not being used with two backs-
lashes (i.e, //).

To set up for Elecraft or Yaesu radi-
os (//#define Icom is commented out):
#define Elecraft
//#define Icom
To set up for an Icom radio (//#de-

fine Elecraft is commented out):
//#define Elecraft
#define Icom
Note: These lines do not end in

semicolons (;).
2. Define which relay will be ac-

tivated for each bands. Each band

20 November/December 2020

needs to have a relay defined in or-
der to configure the system for your
particular station setup.
//Define The RELAY for Each

BAND (Even if it’s not a
resonant antenna, something
needs to be connected.)
const int i160m = Relay1;
const int i80m = Relay1;
const int i60m = Relay1;
const int i40m = Relay2;
const int i30m = Relay2;
const int i20m = Relay3;
const int i17m = Relay3;
const int i15m = Relay3;
const int i12m = Relay4;
const int i10m = Relay4;
const int i6m = Relay4;
Note: Each line must end with a

semicolon.

For the example above, Antenna 1
(Relay1) is used for 160, 80, and 60
meters. Antenna 2 (Relay2) is used
for 40 and 30 meters. Antenna 3 (Re-
lay3) is used for 20, 17, 15, 12, and
10 meters. And Antenna 4 (Relay4)
is used for 6 meters. These can all
be redefined to assign each band to
match your specific antennas.

Also note carefully that each band,
160 through 6 meters, is assigned to
an antenna relay. You should assign
at least one relay for each band, even
if you don’t have a valid antenna for
the band. If no antenna is defined,
and you transmit on that band, the ra-
dio would transmit into an open coax.

3. Define the highest relay used.
There is the line of code, just below
the antenna assignments:
const int HighestRelay =

4;

This should be updated to define
the number of antennas, or relays,
that you are using in your circuit.
This allows manual mode to cycle
only through the antennas you are
using. This can be the actual number
of relays that you are using for your
current antenna setup, not neces-
sarily the number of relays you have
installed. For instance, if you have
four relays built into the circuit but are
only using three, you can define the
HighestRelay = 3; on the line.
You can later change this to 4 and
re-download the code to the Arduino
to update it.

A word of warning: For each line of
code you edit, make sure you do not
remove the semicolon (;) at the end
of each line. These are required.

PDF article:
https://ncjweb.com/bonus-content/W0IH-MultiRadioBandSwitch.pdf

Code/support files:
https://ncjweb.com/bonus-content/W0IH-MultiRadioBandSwitch.zip

Subscription Order Card
The National Contest Journal features articles by top contesters, letters, hints, statistics,

scores and more. A valuable source of information on the active world of competitive radio.

Subscribe Today: Toll free 1-888-277-5289 • On Line www.arrl.org/NCJ

Subscription Rates: 1 year (six issues)

 US $25.00 US via First Class $34.00 Intl. & Canada by air mail $32.00

 Renewal New Subscription

Name: __ Call Sign: _____________________________

Address: __

City: _______________________________ State: _________ ZIP: _____________ Country: ___________

 Check Money Order Credit Card Monies must be in US funds and checks drawn on a US Bank

Charge to:

Account #: _______________________________ Exp. Date: ___________

Signature: __ Pr
oj

ec
t #

35
0

Published by:
ARRL, 225 Main St,
Newington, CT 06111-1494 USA

Contact circulation@arrl.org
with any questions or go to
www.arrl.org

NCJNCJ National Contest Journal

